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The role of thermodynamics in the evolution of systems evolving under purely gravitational forces is not
completely established. Both the infinite range and singularity in the Newtonian force law preclude the use of
standard techniques. However, astronomical observations of globular clusters suggest that they may exist in
distinct thermodynamic phases. Here, using dynamical simulation, we investigate a model gravitational system
that exhibits a phase transition in the mean-field limit. The system consists of rotating, concentric, mass shells
of fixed angular-momentum magnitude and shares identical equilibrium properties with a three-dimensional
point mass system satisfying the same condition. The mean-field results show that a global entropy maximum
exists for the model, and a first order phase transition takes place between “quasi-uniform” and “core-halo”
states, in both the microcanonical and canonical ensembles. Here we investigate the evolution and, with time
averaging, the equilibrium properties of the isolated system. Simulations were carried out in the transition
region, at the critical point, and in each clearly defined thermodynamic phase, and striking differences were
found in each case. We find full agreement with mean-field theory when finite-size scaling is accounted for. In
addition, we find thatl) equilibration obeys power-law behavi¢®) virialization, equilibration, and the decay
of correlations in both position and time, are very slow in the transition region, suggesting that the system is
also spending time in the metastable phase, (@hthere is a strong evidence of long-lived, collective oscil-
lations in the supercritical region.
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[. INTRODUCTION route [7]. Until recently, this second integral has been ig-
nored in investigations of thermodynamic stability in the
In contrast with “normal” systems with short-range inter- mean-field(Vlasov) limit, leaving open the possibility that a

actions, the thermodynamics of self-gravitating systems igentrifugal barrier could prevent collapse and stabilize the
nonextensive and, because of the infinite range and singulagystem. In fact, we have recently shown that even its inclu-
ity of the Newtonian potential, cannot be treated by standar§ion in MFT cannot resolve the gravothermal catastrophe,
methods. A partial remedy for these problems can be con@nd it persists in both the generalized microcanonidal (
structed by confining the system in a finite volume and either~L2) and canonical §—y) ensembleq8]. Ihe extremal
using a regularized Newtonian pair interaction potential, oSelutions have the forniexp(-Be)exp(—°), that coin-
considering théN-body system in the mean-field limit where cides with the V\_/eII known anisotropic density fl_t mod_els that
it is possible to construct an analytic theory fdf,v) , the have been app!led to_ gI(_)buIar cluster observations with some
: : L s - . . succesge.g., King-Michie models[9,10].
single particle density in position and velocity. The first

mean-field formulations showed th spherically symmet- In their seminal work on the gravothermal catastrophe,
ric density profiles represent the states of highest entropy a [ynden-Bell and Wood2] pointed out that in the absence of

(2) a global entropy maximum does not exist. It is always e short-range singularity, the possibility existed for a gravi-

ossible to increase the entropy by simultaneousl| increasintational system to exist in different thermodynamic phases.
b Py by Y gsing mean-field models with a regularized Newtonian po-

the central density and transferring mass to a diffuse “halo”

to control the value of the energy. This phenomenon, calleéentlal that has been dissected to remove the singuldrly

gravothermal catastrophe in the literature, reflects the fact equwalently, mtrod_ucmg repulsu_on at short range by im-
osing a local equation of state in the mean-field picture

that an isolated and bounded gravitational system cannot 112,13, it has been shown that a first order phase transition

in equilibrium in the mean-field limit. Locally stable and . . . :
. . can occur in both the microcanonicdCE) and canonical
unstable entropy extrema can exist, however, if the system L
- - . L0 PCE) ensembles. Unfortunately, for finitd systems, there
energy is above a critical valyd,2], and their stability is - : .
being i : are no exact microcanonical results available that allow the
eing investigated by several authggs-5). rigorous proof of a phase transition or catastrophe. However
In addition to the total energye in the mean-field . 9 proo pha : phe. |
- in the canonical case, it has been rigorously proved that the
limit the sum of squares of the angular momentum o . = .
Lo —lim 1NSI2 . wherel is the anaular momentum of a system of gravitating point masses is in a collapsed state in
27 NS i i 9 equilibrium in the absence of regularizatiphl]. Moreover,
system element, is also an integral of motion for a spheriMonte Carlo simulations for a regularized Newtonian poten-
cally symmetric gravitational systef®] . If, along with the tial confirm the gravitational phase transition in CH] in
energy, this constraint is also included in mean-field theotargeN systems.
ry(MFT) the result is an anisotropic distribution in velocity. ~ While mean-field theories support the existence of phase
The result was first obtained by Eddington from a differenttransitions in gravitational systems, it is important to point
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out that there is no guarantee that these equilibrium statesal phase transition region. In each phase we compare the
will be realized by dynamical evolution. In fact, there is no time-averaged equilibrium properties with the predictions of
proof that the two operations of taking) the mean-field mean-field theory resulting from our earlier investigation,
limit, or (2) the infinite time average, commui#5]. Rather, and also touch on finite-size effects. We then go on to study
simulations of the one-dimensional self-gravitating systenrPoth equilibrium and dynamical features that cannot be pre-
consisting of parallel mass sheets provide strong evidence @icted by mean-field theory, such as the variance of fluctua-
the contrary[16]. As a consequence, the relation betweentions and correlations in both time and position. In addition
maximum entropy solutions of the stationary mean-fieldto the system behavior near the phase transition, we pay
equation and the time-averaged distribution functions resultparticular attention to the critical point and the supercritical
ing from N-body simulation, or dynamical evolution in na- region. Finally, we consider the surprising features exhibited
ture, has not been fully established. This is a deep questiopy different stages of the relaxation process itself, and their
that will not be explored further here. Thus, although much isdependence on energl, and population, and discuss the
known concerning the “equilibrium” properties in the mean- possible presence of collective modes.
field limit, the dynamical properties of gravitational phase
transitions are not well known due to a lack of tiNebody
simulations, which are also important for explaining the evo-
lution of stellar clusters, galaxies, etc. At the present time the The mean-field(or Vlasoy limit is obtained by letting
mean-field predictions of the gravitational phase transitiorN— o while controlling both the total system mass and en-
have only been dynamically confirméth both MCE and  ergy[6,8,19. Taking the limit results in a nonlinear partial
CE) for the model system consisting of irrotational, concen-differential equation, the Vlasov equation for the evolution of
tric, mass shell§17]. In that model, the Newtonian singular- f(r,v), that is first order in the time. In contrast with the
ity was screened by the introduction of an inner barrier thaBoltzmann equation, there is no collision term and, conse-
excluded mass from the system center. quently, the system lacks an increasing entropy as time
The aim of this paper is to investigate and understand th@rogresses. Nonetheless, it is possible to construct maximum
dynamical features of gravitational phase transitions inentropy solutions for qualifying systems. For the special case
N-body simulations for the model of a purely Newtonian of spherical symmetry, the problem reduces to a pair of
system in whichl?=12=L, for each system element. We coupled, nonlinear, differential equations for the local den-
will refer to this system as the® model. We will explicitly  sity, which can be integrated numericall§,8,18,20.
investigate a system of rotating, concentric, mass shells. In Here we introduce th& model of a spherically symmet-
the mean-field limit, this system shares important featuresiic distribution of self-gravitating particles in the mean-field
e.g., the equilibrium density and radial velocity distribution, limit confined in a finite radius<b. A single “test” particle
with the more realistic system of point masses. Recentlyin the system has the Hamiltonian per unit mass
with Prokhorenkov we showed that the gravitational phase
transition is present in both MCE and CE in certain regions )
of 12 and we studied its properties using mean-field theory H= }v2+ ~ B 1)
[18]. Moreover, we rigorously proved the existence of an 2 2 '
upper bound for the entropy in the MGQBwer bound in the
free energy in the CEfor 12#0 in the same work. It is 5 e ) o )
important to understand that this model demonstrates the sigterel” is fixed, ®(r) is the gravitational potential, and we

nificance of the influence of angular momentum on the ther¢h0S€ units wherél=b=1.
modynamics of self-gravitating systems, even if they are. The thermodynamics of this model has been worked out

spherical. The generalized microcanonicEHL,) and ca- figorously in both MCE and CE18]. Since the dynamical
nonical (3— y) ensembles discussed earlit are appropri-  SYSteém is effectively one dimensiond(r,v) now only de-
ate for largeN spherical systems where angular-momenturrP€nds on the radial coordinateand radial velocity. The
exchange occurs. While providing the most general mean=hannon entropy{ f] is a functional off, and is simply

field description8], L, is still not a sufficient constraint to &XPressed by

resolve the gravothermal catastrophe. Clearly, the culprit is

angular-momentum exchange, which is still permitted even if © b

both energy andl, are fixed, and allows the transfer of mass Sfl=- f fo finfdrdo,

to the system center. An open question is the possible exis- o

tence of additional mechanisms for establishing a centrifugal

barrier that prevents, or strongly inhibits, collapse in naturewhere we have chosen unity for the natural measure in the

e.g., in globular clusters or molecular clouds. This will be(r,v) plane, and units where the Boltzmann constaggit 1.

taken up in the final section. As a result of the angular-momentum constraint, the global
In the following, first we briefly review thd? model, maximum of the entropyor minimum of the free energy in

including the mean-field predictions, and discuss the maitCE) exists for alll?+0, and first order phase transitions are

features of théN-body algorithm we designed for its dynami- predicted both in MCE and CE for a specific range of values

cal simulation. Next we turn to the simulation results in aof 12 [18]. As expected, extrema & f] with respect to the

region of the E,12) phase plane containing the microcanoni- constraints of normalization and the total energy

Il. THE L2 MODEL AND MEAN-FIELD RESULTS
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FIG. 1. Plot of the entropy extrema versus energy in the micro- r
canonical ensemble fdf=5x10"% in the mean-field limit. In the
transition region multiple solutions are present, and are marked fotre
E=2 with labels 1, 2, and 3. Only phasgduasiuniform phagds 2
a global entropy maximum above the transition poi&t=(1.9),
while phase Zcondensed phapés locally stable, and phase 3 is a
saddle point.

FIG. 3. The mean-field microcanonical phase diagram. The sys-
m can exist in three distinct phases depending on the energy and
, and we named these phases in analogy to normal systems. We
also indicated the metastable regions that are important for under-
standing the dynamical behavior of the system near the transition
point.

(o1, 1> @ phase, while phase 3 is a saddle point. We can clearly see
E= j,wjo f 2Y * FJF 2 from the figures that at abolt= 1.9, a microcanonical phase

transition takes place between a quasiuniform and a centrally

occur whenf ~ exp(— BH) de_nse core-halo state. This type of phase transition is a

For an isolated syster.n global thermodynamic stability isunlque feature of a self-gravitating system, since the two

: different phases cannot coexist. The selected valu€ i

determined by the state of maximum entropy. In our earlier_, .. -
ff | Il hat th I le ph
work [18] we showed that for2>|§sl.1>< 10, the system sufficiently small, so that the stable and metastable phases

- ) ) 3 are well separated, yet not so small that dynamical simula-
can only exist in a single phase, while fig<1? two stable tion becomes intractable.

phases are available, depending on the energy. In Fig. 1, we ¢ js important to point out that, for gravitational systems,
present the extremal entropy solutiofiscluding both glo-  the CE and MCE formulations are not equivalent. For ex-
bally and locally stabzle maxing,.and the saddle points in thgymple, the value df? at the critical point is different in each
transition regiopfor [*=5X 10" in the MCE. In Fig. 2, we  ensemble, and the transition region in MCE is unstable in
plot the linear density profiles for each of the three phases fof £ This has been discussed in detail elsewhere, and we will
E=2 (Fig. 1. In the transition region and above the transi-not pursue details herfl3,21. In Fig. 3, we present the
tion point atE=2, only phase 1 is globally stablguasiuni-  mjcocanonical phase diagram for the model where, in addi-
form phasg phase 2 is only locally stablécondensed tion to the coexistence curve, we also indicate the boundaries
of regions where a second metastable phase exists. We easily
100 5 observe that there is a critical valuelf where the width of
]\ the metastable region vanishes and beyond which a transition
does not occur. This is a true critical point: Keeping in mind
the analogy with the liquid-vapor transition, states wlith
10 >I§, which characterize the supercritical region are analo-
S 3 gous to the fluid phase. A useful representative of both the
low and high energy phase is the virial ratio=2K/|U]|,
whereK and U are, respectively, the system’s total kinetic
14 and potential energied/ is discontinuous at the transition
] point (also see Fig. band will play the role of order param-
eter in what follows.

drdv,

0,01 0.1 1 IlI. N-BODY CODE AND INITIAL CONDITIONS
r

FIG. 2. Density profiles of the three distinct phases labeled in Our N-body code models a system of concentric, rotating,
Fig. 1 for E=2 in the transition region. Above the transition point infinitesimally thin, spherical mass shells confined in a finite

only the quasiuniform phasghase 1is globally stable, while the ~radiusb, where each shell can rotate about any axis. In this
condensed phagphase 2is locally stable. The third entropy ex- System, theth shell has the following Hamiltonian per unit
tremum(phase 3is unstable. mass,
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i-1 in bini at the timekty,,. Other important statistical proper-
m;/2+ E m 2 ties of the system include fluctuations at fixed time, and cor-
Hi 2 L I (2)  relations in time and position.
m 2 ri 212’ To investigate the approach to mean-fiéd Vlasoy be-

| . N . . .
havior, we directly computed the time-averaged variance in

For a thin shell] =2/3, and the motion of each shell is inte- Kinetic energy from simulations, as well as the variance of
grable between crossings. The main advantages of the mod&€ population of each bin, for selected points in t&e (%)

over the conventionaN-body system of point masses are Phase plane. In each case, their dependence on system popu-
that it preserves Spherica| Symme'[ry7 and itis on|y necessa@tion was Carefu”y studied. To obtain selected information

to evaluate those discrete time events that occur either whePout the decay of fluctuations in time, we studied the cor-
two shells cross one another or when one shell arrives at #lation of the kinetic energy in time,

turning point or the outer boundary. Between these events,

the equations of motion induced by; are easily integrated _ . — —
in closed form yielding the time as an explicit function of Ck(7)= (n—r)o-ﬁ kzl [K(k+7)—K(m][K(k)—K(m],

position. Thus the amounts of numerical error and computa- ()
tion time can be greatly reduced, and simulations can be

performed until thermal equilibrium is obtained. Another ad'whereoﬁ is the variance of the system’s kinetic energy. To
vantage of the model is that, for sufficiently lare it ap-  gain information about the range of correlation in position,
proaches an exact description of a spherical Newtoniagye computed the correlation matrix between each pair of

N—body point mass system. This_can be seen in@EPRbY  pins for the relative populationg, (t) = N;(k) Ny, /N,
recognizing that, with the exception of the valuelpboth

the equations of motion for the radial coordinate, and the 1 n

coupled first order equations for the equilibrium density, are Cij=——— > [pi(k)_Ei(n)][pj(k)_ﬁj(n)], (5)
the same. Clearly=1.0 for the point mass system. Thus if nofof k=1

we letI”=1%/1, wherel” andI? are, respectively, the angular

momenta per unit mass of tfign point mass and the corre- wherea? is the standard deviation of the relative population
sponding shell, we can establish a correspondence betweéncell i.

the two systems. Keeping this connection in mind, we can

compare the dynamical simulations of rotating concentric IV. MICROCANONICAL PHASE TRANSITION
shells presented here with our recent theoretical mean-field
study of a point mass system for tiiemodel. In order to investigate the agreement of dynamical simu-

To compare our results with a system of point particlesations with the predictions of MFT discussed above, we
with fixed 1%, here we prepared our shell system with thecarried out simulations for four system populations, having
equivalent angular momenta of fixed magnitud&2, initial ~ N=16, 32, 64, and 128. While particular attention was fo-
positions uniformly distributed in the intervBD,b], and ini-  cused on the phase transition region |6£5x107°, the
tial radial velocities randomly oriented with fixed magnitude. System dynamics was also investigated in each of the ther-
In order to maintain consistency with the mean-field resultgnodynamic phases in th&E(1%) plane predicted by mean-
[18], reduce numerical errors, and preserve the system dfeld theory. Although it is possible to study evolution in
units applied in the mean-field model, we used similar unitssystems with larger particle numbers, substantially more
with G=b=1 andm;=1/N. We took snapshots of the com- CPU time is required, and it becomes increasingly more dif-
plete system state after the passing of each dynamical timfécult to numerically resolve s_ucgessive shell_grossings that
tayn= /2 [6], of the simulation when the system was well may become closely spaced in time and position during the
relaxed. For the definition of relaxation, we assumed that th€ourse of long simulations. As in the case of the irrotational
system has equilibrated if it has explored the available phasghells studied earlief22], the dynamics of the system
space and, on average, the one particle probability densitghowed highly chaotic behavior and substantial mixingin
function has converged. To quantify convergence, we dispace, i.e., in ther(v) plane. However, as we shall see later,
vided the radius into a fixed number of bildy;,, in which  the rate of mixing strongly depends on the thermodynamic
each shell has equal probability of occurrence in accordandehase in which the system is prepared.
with the mean-field equilibrium probability density profle =~ We selected the time-averaged bin populations as useful
for the given energy and®. We define the system to be measures of agreement between the predictions of MFT and

relaxed int= 2kty,, if, for a suitables>0 (typically 10 7in actual dynamical simulations. Outside the transition region,

our simulation, the relaxed density profiles converged to the corresponding
mean-field density prediction with increasihg This is ap-
Npin o parent in Fig. 4, which shows the averaged relative popula-
o?(2k)= N E [P(k)—P;(2k)]?< 8, (3)  tions forNy;,=20 andE=4. It is clear from the figure that
bin 1=1 convergence in the innermost cell was much weaker than in

_ the remainder, but improves with increasiNg We noticed
where P;(n)==7_;N;(k)Np;»/(Nn) is the time-averaged that, as a rule, both convergence to the Vlasov limit with
relative population in cell andN;(k) is the number of shells increasingN and the evolution of the system in time to the
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FIG. 4. The time-averaged relative populatiofs of relaxed FIG. 5. The time-averaged virial ratio for 56 simulations with
systems in the high energy regionBt4 andl?>=5x10"° with  N=16, 32, 64, and 128 in and around the mean-field transition
Nbin=20. The bins were obtained from the equal-mass radii of theegion. We also plot the mean-field results for the globally stable
mean-field equilibrium density profile. We observe good conver-states that show that the system undergoes a first order phase tran-
gence to the mean-field density profile with increasMgAs a  sition atE=1.9, where the virial ratio becomes discontinuous. The
result of finite-size effects, the central density is higher than thesimulation results converge to the mean-field predictions with in-
mean-field density profile in the high energy region, and causes greasingN, but the transition point is shifted and the transition
reduction in the virial ratio. region is rounded. This is the typical behavior when finite-size scal-

ing theory applies.
equilibrium state were slower in the phase transition region

than in regions of E,1?) where the phases are clearly de- finite N the transition point is shifted and the sharpness is
fined. In addition, the time-averaged virial ratio of the systemrounded.” In “normal” systems with short-range interac-
prepared in the transition and high energy regions wergions, it has been proved that both the amount of shifting and
found to converge on a time scale related to the convergeng@unding scale with distinct powers of [23]. We carefully
of the one particle probability density function jpa space verified that the shifting of the transition point and the round-
described by Eq(3). This is in contrast with the behavior ing of the transition region is in very good agreement with
below the transition region where, typically, the system rap-inite-size scaling theory. We found the transition energy sat-
idly “virialized” in about 100 dynamical times. At energies sfiesE,, (N) — E, ()N ~* while the width of the transition
above the transition region, the time-averaged virial ratio aPregion scales a&E«N~?[24,23 with shifting and rounding
proached the equilibrium value through a sequence of “Unexponents given by = 1.42 andd=1.02 , respectively. This
derdamped” oscillations, while below this region the evolu-result shows that finite-size effects in gravitational systems
tion was characteristic of either critical or overdamping,can also be explained by scaling theory. Finite-size scaling
which shows that mixing is much more effective at low en-was also confirmed for the system of irrotational shells
ergies. 17,25
In common with the earlier study of irrotational shells
[17], we selected the virial ratio as a useful order parameter.
In Fig. 5, we plot the time-averaged virial ratios of the re-
laxed systems for different values of the energy for 56 simu- While it is useful to compare the time averages of physi-
lation runs withl2=5x10"°. As we can see, the simulation cal quantities obtained from simulations with the predictions
results appear to converge to the mean-field predictions witbf equilibrium mean-field theory, dynamical simulations also
increasingN, and the transition region is broadened due toprovide an opportunity to investigate other system properties
finite-size effects. It is interesting that, above the transitionthat are not addressed by MFT, such as the average size of
the “experimental” virial ratio is always less than the mean- fluctuations and the decay of correlations in both position
field prediction for anyN while, below the transition point, and time. In our simulations we continuously monitored the
the behavior is reversed. We would expect this behavior ikinetic energy. For the smallest value Nf the spontaneous
the system were spending varying amounts of time in eacfluctuations were large, of the order of the mean value, but
phase, and we will discuss this possibility further in the con-for the larger populations they settled down. As a further
clusions. Moreover, above the transition region, the approacbheck on the convergence to MFT, we studied the population
to mean-field behavior with increasing (not time occurs  dependence of the variance of statistical fluctuations in both
more slowly than below the transition energy. This is consisthe kinetic energy and the population of each bin. In the
tent with the observation that, at higher energies, the innevlasov limit the system is completely described by the single
part of the relaxed density profiles are greater than the meaparticle distributionf (r,v). If this description is valid, i.e., if
field prediction in the central region. This effect is most evi-the system is approaching the Vlasov limit with increasihg
dent forN=16,32(Fig. 4). then the variances should be asymptotically decreasing as
Phase transitions are only sharp in the lilMitsc . For ~ 1/N for sufficiently largeN. It is interesting that, even for the

V. FLUCTUATIONS AND CORRELATIONS
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TABLE I. The energy and? values used in the simulations for 1.0
the corresponding phases.
0.8
Type of phase Energy 12 " iéﬂ‘ﬁ;ﬁ%

. B {1 —a&— Transition Point
High energy phase 4 %1075 0.6 —s— High Energy
Low energy phase 1.5 %6105 = —*— "Fluid" Phase
Low energy phase 1 %10°° o %4
Mean-field transition point 1.9 810°°
Transition region 2 %10°° 024}

Fluid phase 4 51073 :
Critical point 1.052 1.x10* 0.0

0 10 20 30 40
limited range of total system population considered here, the T

decay of the bin populations obeyed this law almost exactly.
T.he situatio_n for the quptuations in kinetic energy was not SOC,(7) in five different regions foiN=64, wherer is in units of
simple. While their variance also decayed_ with mcreazmlm_g tayn. In both the high energy—=4, 12=5x10"%) and supercriti-
the observed rate of decrease was not uniformly proportloana| phase E=4, 12=5x10"2), correlations are smaller, while in
to 1IN, but rather depended strongly on that part of theihe jow energy phaseE(=1.5, 1?’=5x107%), at the transition
(E,I?) phase plane where the system was situated. We Wilhoint (E=1.9, 12=5x1075 and at the critical point E
return to this point later. =1.052, 12=1.1x 10" %), relatively stronger correlations can be
Useful information concerning the system dynamics ancbserved. Note that the initial exponential decay of the correlation
the approach to the Vlasov limit can be gleaned from arfunction is followed by the development of a long tail.
examination of both correlations in tinj&g. (4)] and posi-
tion [Eq. (5)]. Since there is no information loss in true Vla- the duration of correlation in each phase is increasing with
sov dynamics, to the extent that this description is accurateéncreasingN. This is consistent with other dynamical studies
the duration of correlations in time and, correspondingly, theof systems with long-range interaction, which show that the
range of correlations in position, may not decay to zero. Thidyapunov exponents decrease, and hence memory effects en-
type of behavior has been observed previously in Vlasowure, with increasing populatidi26] once the critical value
simulations of the one-dimensional system of planar masef N has been exceedd@7]. We also mention that, at the
sheets, where complex structures in ghespace distribution low energy ofE=1 with populationsN=32, 64, and 128,
appeared to persist indefinitely16]. Following common correlations started becoming smaller and similar to those at
practice, notice that in our definition of the correlation func-high energy, while we observed significant correlations of
tions we have normalized them to unitytat O for the ki-  long duration in the supercritical phase at much larger values
netic energy, and on the diagonal for bin populations. Thuf 2. This will be discussed in the following sections.
differences of their values from unity reflect the duration and Correlations in position are reflected by nonvanishing off-
range of correlation. In Table I, we list the values of energydiagonal elements of the correlation matrix. In Figs. 7-9, we
andl?, which were used in our simulations in each region ofpresent the population correlation mat@y; with Np,;,=20
the phase plane. Since the transition point is shifted as and N=64 for the low energy phase&eE 1), transition re-
result of finite-size effects, for the evaluation of the popula-gion (E=2), and at the critical point. In the high energy
tion correlation matrix in Eq(5) at this point, we used the region above the transition, and in the supercritical region for
equal probability bin radii derived from the high energy small values of?, no significant correlations were present in
mean-field density profile. In practice, using the low energythe system. In the low energy phadgg. 7), strong correla-
bin radii did not have any impact on the population correla-tion is only present near the system center where the density
tion matrix at the transition point. is high. This effect may be due to the presence of the central
The duration of correlation in the total kinetic energy of core, or long lasting collective oscillations, which we discuss
the system provides a useful indicator for the lifetime ofbelow. Note that the anticorrelated domain in Fig. 7 coin-
fluctuations of macroscopic quantities. In Fig. 6, we plot thecides with the region where the central density decreases to
kinetic energy time correlation function in each of the five the dilute halo background in the mean-field density profile,
different phase regions fdd=64. In general, we observed at about 3—5 bins. In the transition region, however, £8j.
that correlations in the supercritical and high energy phasel®ng-range correlations are clearly present. The likely expla-
decay rapidly, in a few dynamic times. In contrast, the duranation is found by inspection of Fig. 6, where we found an
tion of correlation in the transition region and at the critical extremely long time tail in the kinetic energy autocorrelation
point was at least an order of magnitude longer. In the tranfunction. It appears that, close to the transition, slowly de-
sition region there appears to be a shift at approximately 18aying diffusive modes are propagating throughout the entire
dynamical times to a much slower decay that is hard to quarsystem. Effectively, the system may be spending some time
tify from the graph, but may still be present after 100 dy-in each phase. This simple idea would explain many of the
namical time units. The same qualitative behavior was obebservations for the transition region including the system-
served for each value of the population studied. Howevervide correlation, and the long time tail in the autocorrelation

FIG. 6. The time correlation function of the kinetic energy
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FIG. 7. Position correlation matrix in relative bin populations  FIG. 9. Position correlation matrix in relative populatio@s ,
Cij, for Npjn=20 andi>j in the low energy phaseE(=1, 1°2=5 for Nyi,=20 andi>] near the critical point of the phase diagram
X105, N=64). The bin radii represent the equal-mass layers ob{E=1.052, 1?=1.1X10"4, N=64). The bin radii represent the
tained from the mean-field density profile. Strong anticorrelation isequal-mass shells obtained from the mean-field density profile. The
present close to the high density central core region. behavior is similar to that of the low energy phase, although the
anticorrelating region is wider. This reflects the fact that, at the
critical point, the difference between the two distinct phases van-
i§hes. This intermediate state still has a core-halo structure, but with
a more extended core region.

function, and will be discussed in Sec. VII. Rdr= 128, this
effect is more evident because the transition region is les
rounded. Near the critical poirtFig. 9), we observe similar
behavior as in the low energy phase, except that the corre-

lated region is broadened. Here we also confirmed that the VI. RELAXATION

anticorrelated region in Fig. 9 coincides with the region | this work we consider three types of relaxation: violent
where the mean-field density fades into the halo backgrounde|axation following the initial phase of the simulation,
which occurs at about 3-8 bins. Note that oscillations in the,qjjibration, i.e., the approach to equilibrium, on the longest
kinetic energy autocorrelation function also appear here.  ime scales, and the decay of kinetic energy fluctuations once
equilibrium has been reached. We investigate easilyient)
relaxation by studying the decay of oscillations in the time
averaged virial ratio, equilibration by the reduction of th%
statistic[Eqg. (3)] with time, and the decay of fluctuations
through the kinetic energy autocorrelation functj@&my. (4)].

We see below that each type of relaxation has characteristics
that reflect the location in theE(I?) phase plane in which
the system is prepared.

In the initial evolutionary stage, both the kinetic and po-
tential energies are changing rapidly with time. Lynden-Bell
termed this stage as “violent relaxation” and pointed out that
phase mixing is the usual mechanism for the establishment
of a quasistationary distribution ip space that causes the
gravitational system to virialize. Early relaxation studies of
the planar sheet model showed that virialization typically
takes place in about 50 dynamical times or [g&. Here we
studied the development of the time-averaged virial ratio for
each of the initial states discussed earlier as the time pro-
gressed. Again we found a varied behavior that depends

FIG. 8. Position correlation matrix in relative bin populations Strongly on the location of the ini.tiaIE(,IZ) phase point.
Cij, for Ny,=20 andi>j in the phase transition regionE( Virialization ocqgrred most rapldl){ in the_ low energy phase
=2, 12=5X% 1075, N=64). The bin radii represent the equal-mass below the transition. In common with earlier studies, for both
shells obtained from the mean-field density profile of phase 1 ithe high and low energy phases, the time to achieve virial-
Fig. 1. Strong anticorrelation is present between the center and tH&ation decreased with increasihg In contrast, in the tran-
remainder of the system. sition region, virialization was similar to the relaxation pro-
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FIG. 10. Plots ofo? versus time, which indicate the relaxation

process inu space for simulations withl=16, 32, 64, and 128 in FIG. 11. The time correlation of the kinetic ener@y(7) versus
the low energy phaseE(=1, 12=5x10"%). In order to avoid sta- time for three regions of the supercritical phase at the engrgy
tistical error during sampling, we chose snapshot times0.125,  =0. With increasing?, an oscillating part starts to “sit on top” of

0.25, 0.5, and 1 for the corresponding valuesNsf. In the high  the correlation function, which suppresses the early exponential be-
energy phase, we observe a similar power-law relaxation that alsbavior, and a very long tail starts to develop.
follows o2 1.

fluctuations in the fluid phase with fixegl= 0.0 for different

2 . . .
cess inu space and takes place on a much longer time scal¥@/ués of both® andN. In Fig. 11, we present the kinetic
Moreover, with increasing\, virialization took place on energy?utocorrelatmn function for fixde=0 and three val-
longer time scales due to the decrease in broadening of tH&€s ofl“ (0.005,0.1,0.5) above the critical point value. In a

transition region, and the increasing influence of the metaSystem with sufficiently largé?, we see that oscillations start
stable state. to develop with a long-lived positive tail. In Fig. 12, we plot

the correlation functions for different values bNfat E=0
and|?=0.1. Note that as we approach the mean-field limit,

it was computed for all initial conditions, and its value was € nonvanishing tail has a larger value, and the oscillating
used to terminate each run. Ideally, if the system has IoeIpart has a longer duration. This suggests that, with increasing

fectly equilibrated, it should vanish. In Fig. 10, we presentN’ single particle. behavior is sgppressed and the system
log-log plots of o? versus time for the low energy phase starts to behave like a Vlasov fluid. In the mean-field limit,
r

(E=1), for simulations withN=16, 32, 64, and 128. In the effective potentiadb +14/(2r<) always has a minimum.

2 . . .
order to compensate for the statistical error induced by dif—FOr large values of®, the width of this region becomes

ferences inN, we used sampling rates with respective Snap_Iarger, possibly allowing low frequency collective modes to

shot times 0.125,,0.2% 4y 0.5tayn.Layn. IN the transition develop in the system. Similar behavior was observed by

region, we used the high energy, equal-mass, mean-field bir%ﬁ'x and Rouet for the system of planar mass shigzaj

to calculate the relative populations. In all cases we foun(rjpae,fes:ggng'hﬂ s;;shenrg \t,\lfl?ist ﬁirﬁg?éegn'gra Sﬁjgg:{% nvsvarfzg
that the relaxation process exhibits power-law behavior o 9 : y . 9y

. ) ' . the frequency of the collective modes, rather than that of the
long time scales, which meartsfoct . Interestingly, for

both the low and high energy phases, the exponenas not

N dependent, and the relaxation was similar in both phases
with «=1.0x£0.1. However, in the transition region simula-
tions were relaxing more slowly with larger fluctuations,
suggesting that the system may be flipping back and forth
between the stable and metastable phases. Here, with in-
creasingN, « became smaller while its variance becomes
larger. FOrN=16, « is still 1+=0.2 but forN=32, 64, and

128 the uncertainty becomes larger.

The possibility for collective modes in systems with long-
range forces has been studied in both plasmas and gravita-
tional system$6]. Even for the small populations considered
here, careful examination of Fig. 6 indicates that, as the en-
ergy is lowered, the correlation function exhibits damped
oscillations. Since we are examining the total kinetic energy
of the system, this suggests the possible presence of collec- F|G. 12. N dependence of the oscillations@x(7) atE=0 and
tive oscillations in equilibrium. To examine this in further |2=0.1. As we approach the mean-field limit, oscillations persist for
detail, we usedCk(7) to study the decay of kinetic energy a longer time and correlations in the tail grow.

The o statistic, Eq(3), compares the time-averaged dis-
tribution of shells in bins at timesand 2. As noted earlier,

1.0

c(
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individual closed Vlasov orbits in thex(v) phase plane. The In this work we usedN-body dynamical simulation to
same phenomena may be occurring in ithenodel as well.  verify the earlier mean-field predictiorid8]. Our N-body
Supporting evidence was provided by the correlation matrixsimulations confirmed the mean-field phase transition, that
which showed strong correlations in position in the centrawas shifted and broadened due to finite-size effects. We also
part of the system for these thermodynamic states. verified that finite-size scaling is in very good agreement
with the observed shifting and rounding in the transition re-
gion. An interesting feature of the convergence to MFT was
VIl. SUMMARY AND CONCLUSIONS the observation that agreement in the density with increasing
N was much slower near the system center for small values
The role of thermodynamics in controlling the evolution of 12. This appears to be a discreteness effect. For a small
of gravitational systems is only partially understood, andvalue ofl? the density is changing rapidly due to the com-
there are many open questions. It is our impression that repetition between the centrifugal barrier and the largely un-
cently this subject is attracting increased attention. Observescreened gravitational potential, which combine to form a
tions of the radial density dependence of globular clustergery narrow minimum in the effective potential. Because of
show that they fall into two groups, with either a smoothly discreteness effects, the mean local density cannot change
decreasing density profile with increasing radiuer a sharp ~ this rapidly in the dynamical simulation, and this was readily
central peak and a more diffuse hfik®]. The evidence sug- observabl'e' in the average population of the .central bln:
gests that a thermodynamic interpretation may be possible, !N addition to confirming agreement with mean-field

i.e., perhaps the clusters can exist in different phases at oEJF—‘eor_y for the time average of physical quantities, such as the
servable time$10] density and the kinetic and potential energies, we also stud-

Here we investigated the dynamics of the gravitationalied fluctuations in density and kinetic energy, correlations in
phase transition in thE? model of a self-gravitating system position, and the dynamical behavior of the system in each

in the MCE in which the mass elements are thin, concentri hase, the transition region, and at the critical point, i.e.,
. ) . LU ‘groperties that are not accessible from MFT. These included
shells. In this idealized model, instead of regularizing thev

inqularity of th . ol imolv fixed th irialization, relaxation to equilibrium, and the decay of fluc-
singularity of the Newtonian potential, we simply fixed the ,a4qns in kinetic energy through its autocorrelation func-

square of the angular momentum of each shell. In Sec. llljon |y general, ad\ becomes large, it is expected that the
we showeq that, in the mean-field limit, the equmbnum Vlasov regime will be approached. In this regimér,v)
states of this system correspond to those of the more realistigmpletely characterizes the system at each time. It was
system of point masses when the same constraint is imposeghown long ago that in a system with a smooth, bounded
In an earlier work, we showed that a correspondence alsgotential, fluctuations and correlations decay in the Vlasov
exists under less restrictive circumstanf@ls The constraint  |imit [19]. In the largeN scaling regime it is easy to show
of constant|? for each shell, or particle, establishes a cen-that the variance of fluctuations in both bin populations and
trifugal barrier that prevents the occurrence of the gravothertotal kinetic energy should decay & 1. We found this
mal catastrophe, and induces a first order phase transition mehavior over the complete range of population for the
both CE and MCH18]. former, while a wide variation of power-law exponents char-
One important conclusion that can be reached from thigicterized the reduction of the kinetic energy variance de-
study is that angular-momentum exchange plays an impmpending on the thermodynamic state. This suggests that our
tant role in a self-gravitating system, which alters the thersimulations were not fully in the scaling regime for the
modynamic behavior. Another is that it is not necessary témaller populations considered. This is not surprising, and
soften the singularity in the Newtonian potential to obtain awas supported by the size of the spontaneous kinetic energy
transition. The effect of the singularity can be blocked byfluctuations as well as thdl dependence of the remaining
other mechanisms. This is especially relevant in stellar clusdynamical quantities.
ters, where the distance between stars is too great for soften- In the transition region, strong corroborating evidence
ing to be important. If stellar systems can exist in, or everivas obtained to support the ansatz that the system is fluctu-
approximate, different thermodynamic phases, the influencating in time between the stable and metastable phases. First
of the singularity needs to be blocked, at least temporarily. Irof all, relaxation to equilibrium as measured by g sta-
our earlier, mean-field study of a spherical system that pertistic takes longer and, at a given time, the fluctuations are
mitted exchange, no transition was found and the gravothemuch larger than those occurring away from the transition.
mal catastrophe could not be prevented in spite of the fackecond, virialization occurs on the same time scaleras
that bothL, andE were fixed. At this time it is not clear how whereas at low energy, the virialization takes place in about
this might occur. One possibility is that angular-momentum10Q4,,. Fast virialization is also observed in other model
exchange between stars may occur so slowly that, in theystems that lack a transition, such as the planar sheet system
present epoch, thermodynamics could be influenced by af28,30 and point mass systen$,10] where it occurs in
effective centrifugal barrier. Since globular clusters are ap50-100 dynamical times, long before relaxation to equilib-
proximately spherical, this is worth investigating. Another rium has occurred. Third, near the transition an extremely
possibility is that stellar interactions with hard binaries in thelong time tail appears in the kinetic energy autocorrelation
cluster core may also establish a centrifugal barrier. Theskinction, indicating that the system continues to feel the
conjectures require further investigation. presence of the metastable phase. The lack of oscillation in
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Ck(t) suggests that a slow, diffusive mode is dominating thecritical value of the new parameter above which the transi-
linear relaxation. tion is not allowed. However, in the present system we find
The observation that relaxation to equilibrium exhibits evidence of persistent fluctuations that develop long-lived
power-law behavior was unanticipated and is crucial for un-oscillations asN is increased in MCE, and local correlation
derstanding the system dynamics. In the astrophysics literan position near the system center. This suggests that collec-
ture it is usual to define the relaxation time for gravitationaltive oscillations may be occurring in the system. Persistent
evolution [6,10] as the time taken for a typical star to be oscillations were also observed in simulations of the planar
sufficiently deflected so that the change in its velocity is ofsheet system for largd [29].
the order of its mean. The standard result tigax We are currently modeling the system via dynamical
~(N/10InN)ty,,. However, here we see that relaxation doessimulation for the canonical ensemble. This is accomplished
not occur with a characteristic time, but rather is scale-freepy introducing thermalizing collisions at the outer boundary.
with of~t~%. An open question is whether relaxation is There are strong contrasts with the MCE, which we will
scale-free in higher dimension as well, e.g., for a point massgeport in a separate work. We also plan to use dynamical
system. simulation to investigate the locally stable regime that arises
There are now two gravitational systems in which thewhen angular-momentum exchange is allo8l In addi-
existence of a first order phase transition has been demotion, we would like to suggest that the Vlasov dynamics may

strated both by mean-field theory and, within finite scaling,give insight into the collective behavior found in the fluid
dynamical simulation. The system of irrotational shells studphase of thd? model.

ied earlier[17] and the system considered here share many

similarities, but differ in one feature. Each system is charac-

terized by an additiona! parameter besides the energy: In the ACKNOWLEDGMENTS
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