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Angular-momentum-induced phase transition in spherical gravitational systems:
N-body simulations
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Department of Physics, Texas Christian University, Fort Worth, Texas 76129

~Received 11 December 2001; published 21 May 2002!

The role of thermodynamics in the evolution of systems evolving under purely gravitational forces is not
completely established. Both the infinite range and singularity in the Newtonian force law preclude the use of
standard techniques. However, astronomical observations of globular clusters suggest that they may exist in
distinct thermodynamic phases. Here, using dynamical simulation, we investigate a model gravitational system
that exhibits a phase transition in the mean-field limit. The system consists of rotating, concentric, mass shells
of fixed angular-momentum magnitude and shares identical equilibrium properties with a three-dimensional
point mass system satisfying the same condition. The mean-field results show that a global entropy maximum
exists for the model, and a first order phase transition takes place between ‘‘quasi-uniform’’ and ‘‘core-halo’’
states, in both the microcanonical and canonical ensembles. Here we investigate the evolution and, with time
averaging, the equilibrium properties of the isolated system. Simulations were carried out in the transition
region, at the critical point, and in each clearly defined thermodynamic phase, and striking differences were
found in each case. We find full agreement with mean-field theory when finite-size scaling is accounted for. In
addition, we find that~1! equilibration obeys power-law behavior,~2! virialization, equilibration, and the decay
of correlations in both position and time, are very slow in the transition region, suggesting that the system is
also spending time in the metastable phase, and~3! there is a strong evidence of long-lived, collective oscil-
lations in the supercritical region.

DOI: 10.1103/PhysRevE.65.056127 PACS number~s!: 64.60.2i, 05.20.2y, 98.10.1z, 05.70.Fh
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I. INTRODUCTION

In contrast with ‘‘normal’’ systems with short-range inte
actions, the thermodynamics of self-gravitating systems
nonextensive and, because of the infinite range and sing
ity of the Newtonian potential, cannot be treated by stand
methods. A partial remedy for these problems can be c
structed by confining the system in a finite volume and eit
using a regularized Newtonian pair interaction potential,
considering theN-body system in the mean-field limit wher
it is possible to construct an analytic theory off (r ,v) , the
single particle density in position and velocity. The fir
mean-field formulations showed that~1! spherically symmet-
ric density profiles represent the states of highest entropy
~2! a global entropy maximum does not exist@1#. It is always
possible to increase the entropy by simultaneously increa
the central density and transferring mass to a diffuse ‘‘ha
to control the value of the energy. This phenomenon, ca
gravothermal catastrophe in the literature, reflects the
that an isolated and bounded gravitational system canno
in equilibrium in the mean-field limit. Locally stable an
unstable entropy extrema can exist, however, if the syste
energy is above a critical value@1,2#, and their stability is
being investigated by several authors@3–5#.

In addition to the total energyE in the mean-field
limit the sum of squares of the angular momentu
L25 lim

N→`
1/N( l i

2 , wherel i is the angular momentum of

system element, is also an integral of motion for a sph
cally symmetric gravitational system@6# . If, along with the
energy, this constraint is also included in mean-field th
ry~MFT! the result is an anisotropic distribution in velocit
The result was first obtained by Eddington from a differe
1063-651X/2002/65~5!/056127~10!/$20.00 65 0561
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route @7#. Until recently, this second integral has been
nored in investigations of thermodynamic stability in th
mean-field~Vlasov! limit, leaving open the possibility that a
centrifugal barrier could prevent collapse and stabilize
system. In fact, we have recently shown that even its inc
sion in MFT cannot resolve the gravothermal catastrop
and it persists in both the generalized microcanonicalE
2L2) and canonical (b2g) ensembles@8#. The extremal
solutions have the formf }exp(2be)exp(2gl2), that coin-
cides with the well known anisotropic density fit models th
have been applied to globular cluster observations with so
success~e.g., King-Michie models! @9,10#.

In their seminal work on the gravothermal catastrop
Lynden-Bell and Wood@2# pointed out that in the absence o
the short-range singularity, the possibility existed for a gra
tational system to exist in different thermodynamic phas
Using mean-field models with a regularized Newtonian p
tential that has been dissected to remove the singularity@11#
or, equivalently, introducing repulsion at short range by i
posing a local equation of state in the mean-field pict
@3,12,13#, it has been shown that a first order phase transit
can occur in both the microcanonical~MCE! and canonical
~CE! ensembles. Unfortunately, for finiteN systems, there
are no exact microcanonical results available that allow
rigorous proof of a phase transition or catastrophe. Howe
in the canonical case, it has been rigorously proved that
system of gravitating point masses is in a collapsed stat
equilibrium in the absence of regularization@11#. Moreover,
Monte Carlo simulations for a regularized Newtonian pote
tial confirm the gravitational phase transition in CE@14# in
largeN systems.

While mean-field theories support the existence of ph
transitions in gravitational systems, it is important to po
©2002 The American Physical Society27-1
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out that there is no guarantee that these equilibrium st
will be realized by dynamical evolution. In fact, there is n
proof that the two operations of taking~1! the mean-field
limit, or ~2! the infinite time average, commute@15#. Rather,
simulations of the one-dimensional self-gravitating syst
consisting of parallel mass sheets provide strong evidenc
the contrary@16#. As a consequence, the relation betwe
maximum entropy solutions of the stationary mean-fi
equation and the time-averaged distribution functions res
ing from N-body simulation, or dynamical evolution in na
ture, has not been fully established. This is a deep ques
that will not be explored further here. Thus, although much
known concerning the ‘‘equilibrium’’ properties in the mea
field limit, the dynamical properties of gravitational pha
transitions are not well known due to a lack of trueN-body
simulations, which are also important for explaining the ev
lution of stellar clusters, galaxies, etc. At the present time
mean-field predictions of the gravitational phase transit
have only been dynamically confirmed~in both MCE and
CE! for the model system consisting of irrotational, conce
tric, mass shells@17#. In that model, the Newtonian singula
ity was screened by the introduction of an inner barrier t
excluded mass from the system center.

The aim of this paper is to investigate and understand
dynamical features of gravitational phase transitions
N-body simulations for the model of a purely Newtonia
system in whichl i

25 l 25L2 for each system element. W
will refer to this system as thel 2 model. We will explicitly
investigate a system of rotating, concentric, mass shells
the mean-field limit, this system shares important featu
e.g., the equilibrium density and radial velocity distributio
with the more realistic system of point masses. Recen
with Prokhorenkov we showed that the gravitational ph
transition is present in both MCE and CE in certain regio
of l 2 and we studied its properties using mean-field the
@18#. Moreover, we rigorously proved the existence of
upper bound for the entropy in the MCE~lower bound in the
free energy in the CE! for l 2Þ0 in the same work. It is
important to understand that this model demonstrates the
nificance of the influence of angular momentum on the th
modynamics of self-gravitating systems, even if they
spherical. The generalized microcanonical (E2L2) and ca-
nonical (b2g) ensembles discussed earlier@8# are appropri-
ate for largeN spherical systems where angular-moment
exchange occurs. While providing the most general me
field description@8#, L2 is still not a sufficient constraint to
resolve the gravothermal catastrophe. Clearly, the culpr
angular-momentum exchange, which is still permitted eve
both energy andL2 are fixed, and allows the transfer of ma
to the system center. An open question is the possible e
tence of additional mechanisms for establishing a centrifu
barrier that prevents, or strongly inhibits, collapse in natu
e.g., in globular clusters or molecular clouds. This will
taken up in the final section.

In the following, first we briefly review thel 2 model,
including the mean-field predictions, and discuss the m
features of theN-body algorithm we designed for its dynam
cal simulation. Next we turn to the simulation results in
region of the (E,l 2) phase plane containing the microcano
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cal phase transition region. In each phase we compare
time-averaged equilibrium properties with the predictions
mean-field theory resulting from our earlier investigatio
and also touch on finite-size effects. We then go on to st
both equilibrium and dynamical features that cannot be p
dicted by mean-field theory, such as the variance of fluct
tions and correlations in both time and position. In additi
to the system behavior near the phase transition, we
particular attention to the critical point and the supercritic
region. Finally, we consider the surprising features exhibi
by different stages of the relaxation process itself, and th
dependence on energy,l 2, and population, and discuss th
possible presence of collective modes.

II. THE L 2 MODEL AND MEAN-FIELD RESULTS

The mean-field~or Vlasov! limit is obtained by letting
N→` while controlling both the total system mass and e
ergy @6,8,19#. Taking the limit results in a nonlinear partia
differential equation, the Vlasov equation for the evolution
f (r ,v), that is first order in the time. In contrast with th
Boltzmann equation, there is no collision term and, con
quently, the system lacks an increasing entropy as t
progresses. Nonetheless, it is possible to construct maxim
entropy solutions for qualifying systems. For the special c
of spherical symmetry, the problem reduces to a pair
coupled, nonlinear, differential equations for the local de
sity, which can be integrated numerically@6,8,18,20#.

Here we introduce thel 2 model of a spherically symmet
ric distribution of self-gravitating particles in the mean-fie
limit confined in a finite radiusr<b. A single ‘‘test’’ particle
in the system has the Hamiltonian per unit mass

H5
1

2
v21

l 2

2r 2
1F~r !, ~1!

wherel 2 is fixed,F(r ) is the gravitational potential, and w
chose units whereM5b51.

The thermodynamics of this model has been worked
rigorously in both MCE and CE@18#. Since the dynamica
system is effectively one dimensional,f (r ,v) now only de-
pends on the radial coordinater and radial velocityv. The
Shannon entropyS@ f # is a functional of f, and is simply
expressed by

S@ f #52E
2`

` E
0

b

f lnf drdv,

where we have chosen unity for the natural measure in
(r ,v) plane, and units where the Boltzmann constantkB51.
As a result of the angular-momentum constraint, the glo
maximum of the entropy~or minimum of the free energy in
CE! exists for alll 2Þ0, and first order phase transitions a
predicted both in MCE and CE for a specific range of valu
of l 2 @18#. As expected, extrema ofS@ f # with respect to the
constraints of normalization and the total energy
7-2
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E5E
2`

` E
0

b

f S 1

2
v21

l 2

2r 2
1

F

2 D drdv,

occur whenf ;exp(2bH).
For an isolated system, global thermodynamic stability

determined by the state of maximum entropy. In our ear
work @18# we showed that forl 2. l c

2>1.131024, the system
can only exist in a single phase, while forl 2, l c

2 two stable
phases are available, depending on the energy. In Fig. 1
present the extremal entropy solutions~including both glo-
bally and locally stable maxima, and the saddle points in
transition region! for l 25531025 in the MCE. In Fig. 2, we
plot the linear density profiles for each of the three phases
E52 ~Fig. 1!. In the transition region and above the tran
tion point atE52, only phase 1 is globally stable~quasiuni-
form phase!, phase 2 is only locally stable~condensed

FIG. 1. Plot of the entropy extrema versus energy in the mic
canonical ensemble forl 25531025 in the mean-field limit. In the
transition region multiple solutions are present, and are marked
E52 with labels 1, 2, and 3. Only phase 1~quasiuniform phase! is
a global entropy maximum above the transition point (E51.9),
while phase 2~condensed phase! is locally stable, and phase 3 is
saddle point.

FIG. 2. Density profiles of the three distinct phases labeled
Fig. 1 for E52 in the transition region. Above the transition poi
only the quasiuniform phase~phase 1! is globally stable, while the
condensed phase~phase 2! is locally stable. The third entropy ex
tremum~phase 3! is unstable.
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phase!, while phase 3 is a saddle point. We can clearly s
from the figures that at aboutE51.9, a microcanonical phas
transition takes place between a quasiuniform and a cent
dense core-halo state. This type of phase transition i
unique feature of a self-gravitating system, since the t
different phases cannot coexist. The selected value ofl 2 is
sufficiently small, so that the stable and metastable pha
are well separated, yet not so small that dynamical simu
tion becomes intractable.

It is important to point out that, for gravitational system
the CE and MCE formulations are not equivalent. For e
ample, the value ofl 2 at the critical point is different in each
ensemble, and the transition region in MCE is unstable
CE. This has been discussed in detail elsewhere, and we
not pursue details here@13,21#. In Fig. 3, we present the
micocanonical phase diagram for the model where, in ad
tion to the coexistence curve, we also indicate the bounda
of regions where a second metastable phase exists. We e
observe that there is a critical value ofl 2, where the width of
the metastable region vanishes and beyond which a trans
does not occur. This is a true critical point: Keeping in mi
the analogy with the liquid-vapor transition, states withl 2

. l c
2 , which characterize the supercritical region are ana

gous to the fluid phase. A useful representative of both
low and high energy phase is the virial ratioV52K/uUu,
whereK and U are, respectively, the system’s total kinet
and potential energies.V is discontinuous at the transitio
point ~also see Fig. 5! and will play the role of order param
eter in what follows.

III. N-BODY CODE AND INITIAL CONDITIONS

Our N-body code models a system of concentric, rotati
infinitesimally thin, spherical mass shells confined in a fin
radiusb, where each shell can rotate about any axis. In t
system, thei th shell has the following Hamiltonian per un
mass,

-

or

n

FIG. 3. The mean-field microcanonical phase diagram. The s
tem can exist in three distinct phases depending on the energy
l 2, and we named these phases in analogy to normal systems
also indicated the metastable regions that are important for un
standing the dynamical behavior of the system near the trans
point.
7-3
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1
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v i

22

mi /21 (
k51

i 21

mk

r i
1

l i
2

2Ir i
2

. ~2!

For a thin shell,I 52/3, and the motion of each shell is inte
grable between crossings. The main advantages of the m
over the conventionalN-body system of point masses a
that it preserves spherical symmetry, and it is only neces
to evaluate those discrete time events that occur either w
two shells cross one another or when one shell arrives
turning point or the outer boundary. Between these eve
the equations of motion induced byHi are easily integrated
in closed form yielding the time as an explicit function
position. Thus the amounts of numerical error and compu
tion time can be greatly reduced, and simulations can
performed until thermal equilibrium is obtained. Another a
vantage of the model is that, for sufficiently largeN, it ap-
proaches an exact description of a spherical Newton
N-body point mass system. This can be seen in Eq.~1! by
recognizing that, with the exception of the value ofI, both
the equations of motion for the radial coordinate, and
coupled first order equations for the equilibrium density,
the same. ClearlyI 51.0 for the point mass system. Thus
we let l i

P5 l i
S/I , wherel i

P and l i
S are, respectively, the angula

momenta per unit mass of theith point mass and the corre
sponding shell, we can establish a correspondence betw
the two systems. Keeping this connection in mind, we c
compare the dynamical simulations of rotating concen
shells presented here with our recent theoretical mean-
study of a point mass system for thel 2 model.

To compare our results with a system of point partic
with fixed l 2, here we prepared our shell system with t
equivalent angular momenta of fixed magnitude 2l 2/3, initial
positions uniformly distributed in the interval@0,b#, and ini-
tial radial velocities randomly oriented with fixed magnitud
In order to maintain consistency with the mean-field resu
@18#, reduce numerical errors, and preserve the system
units applied in the mean-field model, we used similar un
with G5b51 andmi51/N. We took snapshots of the com
plete system state after the passing of each dynamical
tdyn5p/2 @6#, of the simulation when the system was we
relaxed. For the definition of relaxation, we assumed that
system has equilibrated if it has explored the available ph
space and, on average, the one particle probability den
function has converged. To quantify convergence, we
vided the radius into a fixed number of bins,Nbin , in which
each shell has equal probability of occurrence in accorda
with the mean-field equilibrium probability density profi
for the given energy andl 2. We define the system to b
relaxed int52ktdyn if, for a suitabled.0 ~typically 1027 in
our simulations!,

s r
2~2k!5

1

Nbin
(
i 51

Nbin

@ P̄i~k!2 P̄i~2k!#2,d, ~3!

where P̄i(n)5(k51
n Ni(k)Nbin /(Nn) is the time-averaged

relative population in celli andNi(k) is the number of shells
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in bin i at the timektdyn . Other important statistical proper
ties of the system include fluctuations at fixed time, and c
relations in time and position.

To investigate the approach to mean-field~or Vlasov! be-
havior, we directly computed the time-averaged variance
kinetic energy from simulations, as well as the variance
the population of each bin, for selected points in the (E, l 2)
phase plane. In each case, their dependence on system
lation was carefully studied. To obtain selected informati
about the decay of fluctuations in time, we studied the c
relation of the kinetic energy in time,

CK~t!5
1

~n2t!sK
2 (

k51

n2t

@K~k1t!2K̄~n!#@K~k!2K̄~n!#,

~4!

wheresK
2 is the variance of the system’s kinetic energy.

gain information about the range of correlation in positio
we computed the correlation matrix between each pair
bins for the relative populationsPi(t)5Ni(k)Nbin /N,

Ci j 5
1

ns i
Ps j

P (
k51

n

@Pi~k!2 P̄i~n!#@Pj~k!2 P̄j~n!#, ~5!

wheres i
P is the standard deviation of the relative populati

in cell i.

IV. MICROCANONICAL PHASE TRANSITION

In order to investigate the agreement of dynamical sim
lations with the predictions of MFT discussed above,
carried out simulations for four system populations, hav
N516, 32, 64, and 128. While particular attention was
cused on the phase transition region ofl 25531025, the
system dynamics was also investigated in each of the t
modynamic phases in the (E,l 2) plane predicted by mean
field theory. Although it is possible to study evolution
systems with larger particle numbers, substantially m
CPU time is required, and it becomes increasingly more
ficult to numerically resolve successive shell crossings t
may become closely spaced in time and position during
course of long simulations. As in the case of the irrotatio
shells studied earlier@22#, the dynamics of the system
showed highly chaotic behavior and substantial mixing inm
space, i.e., in the (r ,v) plane. However, as we shall see late
the rate of mixing strongly depends on the thermodynam
phase in which the system is prepared.

We selected the time-averaged bin populations as us
measures of agreement between the predictions of MFT
actual dynamical simulations. Outside the transition regi
the relaxed density profiles converged to the correspond
mean-field density prediction with increasingN. This is ap-
parent in Fig. 4, which shows the averaged relative popu
tions for Nbin520 andE54. It is clear from the figure tha
convergence in the innermost cell was much weaker tha
the remainder, but improves with increasingN. We noticed
that, as a rule, both convergence to the Vlasov limit w
increasingN and the evolution of the system in time to th
7-4
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equilibrium state were slower in the phase transition reg
than in regions of (E,l 2) where the phases are clearly d
fined. In addition, the time-averaged virial ratio of the syst
prepared in the transition and high energy regions w
found to converge on a time scale related to the converge
of the one particle probability density function inm space
described by Eq.~3!. This is in contrast with the behavio
below the transition region where, typically, the system r
idly ‘‘virialized’’ in about 100 dynamical times. At energie
above the transition region, the time-averaged virial ratio
proached the equilibrium value through a sequence of ‘‘
derdamped’’ oscillations, while below this region the evo
tion was characteristic of either critical or overdampin
which shows that mixing is much more effective at low e
ergies.

In common with the earlier study of irrotational she
@17#, we selected the virial ratio as a useful order parame
In Fig. 5, we plot the time-averaged virial ratios of the r
laxed systems for different values of the energy for 56 sim
lation runs withl 25531025. As we can see, the simulatio
results appear to converge to the mean-field predictions
increasingN, and the transition region is broadened due
finite-size effects. It is interesting that, above the transiti
the ‘‘experimental’’ virial ratio is always less than the mea
field prediction for anyN while, below the transition point
the behavior is reversed. We would expect this behavio
the system were spending varying amounts of time in e
phase, and we will discuss this possibility further in the co
clusions. Moreover, above the transition region, the appro
to mean-field behavior with increasingN ~not time! occurs
more slowly than below the transition energy. This is cons
tent with the observation that, at higher energies, the in
part of the relaxed density profiles are greater than the m
field prediction in the central region. This effect is most e
dent forN516,32~Fig. 4!.

Phase transitions are only sharp in the limitN→` . For

FIG. 4. The time-averaged relative populationsP̄i of relaxed
systems in the high energy region atE54 and l 25531025 with
Nbin520. The bins were obtained from the equal-mass radii of
mean-field equilibrium density profile. We observe good conv
gence to the mean-field density profile with increasingN. As a
result of finite-size effects, the central density is higher than
mean-field density profile in the high energy region, and caus
reduction in the virial ratio.
05612
n

e
ce

-

-
-

-
,
-

r.

-

th
o
,

if
h
-
ch

-
er
n-

-

finite N the transition point is shifted and the sharpness
‘‘rounded.’’ In ‘‘normal’’ systems with short-range interac
tions, it has been proved that both the amount of shifting a
rounding scale with distinct powers ofN @23#. We carefully
verified that the shifting of the transition point and the roun
ing of the transition region is in very good agreement w
finite-size scaling theory. We found the transition energy s
isfiesEtr(N)2Etr(`)}N2l while the width of the transition
region scales asDE}N2u @24,23# with shifting and rounding
exponents given byl51.42 andu51.02 , respectively. This
result shows that finite-size effects in gravitational syste
can also be explained by scaling theory. Finite-size sca
was also confirmed for the system of irrotational she
@17,25#.

V. FLUCTUATIONS AND CORRELATIONS

While it is useful to compare the time averages of phy
cal quantities obtained from simulations with the predictio
of equilibrium mean-field theory, dynamical simulations al
provide an opportunity to investigate other system proper
that are not addressed by MFT, such as the average siz
fluctuations and the decay of correlations in both posit
and time. In our simulations we continuously monitored t
kinetic energy. For the smallest value ofN, the spontaneous
fluctuations were large, of the order of the mean value,
for the larger populations they settled down. As a furth
check on the convergence to MFT, we studied the popula
dependence of the variance of statistical fluctuations in b
the kinetic energy and the population of each bin. In t
Vlasov limit the system is completely described by the sin
particle distributionf (r ,v). If this description is valid, i.e., if
the system is approaching the Vlasov limit with increasingN,
then the variances should be asymptotically decreasing
1/N for sufficiently largeN. It is interesting that, even for the

e
-

e
a

FIG. 5. The time-averaged virial ratio for 56 simulations wi
N516, 32, 64, and 128 in and around the mean-field transit
region. We also plot the mean-field results for the globally sta
states that show that the system undergoes a first order phase
sition atE51.9, where the virial ratio becomes discontinuous. T
simulation results converge to the mean-field predictions with
creasingN, but the transition point is shifted and the transitio
region is rounded. This is the typical behavior when finite-size sc
ing theory applies.
7-5



th
tl
s

n
h
w

n
a

-
at
th
h
so
as

c

hu
n
g
o
s
la

y
rg
la

of
o
h
ve
d
s
ra
a
an
1

a
y
ob
ve

ith
es
the
s en-

e

e at
of

ues

ff-
we

y
for
in

sity
tral
ss
in-
s to
le,

la-
an
on
e-
tire
ime
the
m-
on

r

y

e
tion

PETER KLINKO AND BRUCE N. MILLER PHYSICAL REVIEW E65 056127
limited range of total system population considered here,
decay of the bin populations obeyed this law almost exac
The situation for the fluctuations in kinetic energy was not
simple. While their variance also decayed with increasingN,
the observed rate of decrease was not uniformly proportio
to 1/N, but rather depended strongly on that part of t
(E,l 2) phase plane where the system was situated. We
return to this point later.

Useful information concerning the system dynamics a
the approach to the Vlasov limit can be gleaned from
examination of both correlations in time@Eq. ~4!# and posi-
tion @Eq. ~5!#. Since there is no information loss in true Vla
sov dynamics, to the extent that this description is accur
the duration of correlations in time and, correspondingly,
range of correlations in position, may not decay to zero. T
type of behavior has been observed previously in Vla
simulations of the one-dimensional system of planar m
sheets, where complex structures in them space distribution
appeared to persist indefinitely@16#. Following common
practice, notice that in our definition of the correlation fun
tions we have normalized them to unity att50 for the ki-
netic energy, and on the diagonal for bin populations. T
differences of their values from unity reflect the duration a
range of correlation. In Table I, we list the values of ener
andl 2, which were used in our simulations in each region
the phase plane. Since the transition point is shifted a
result of finite-size effects, for the evaluation of the popu
tion correlation matrix in Eq.~5! at this point, we used the
equal probability bin radii derived from the high energ
mean-field density profile. In practice, using the low ene
bin radii did not have any impact on the population corre
tion matrix at the transition point.

The duration of correlation in the total kinetic energy
the system provides a useful indicator for the lifetime
fluctuations of macroscopic quantities. In Fig. 6, we plot t
kinetic energy time correlation function in each of the fi
different phase regions forN564. In general, we observe
that correlations in the supercritical and high energy pha
decay rapidly, in a few dynamic times. In contrast, the du
tion of correlation in the transition region and at the critic
point was at least an order of magnitude longer. In the tr
sition region there appears to be a shift at approximately
dynamical times to a much slower decay that is hard to qu
tify from the graph, but may still be present after 100 d
namical time units. The same qualitative behavior was
served for each value of the population studied. Howe

TABLE I. The energy andl 2 values used in the simulations fo
the corresponding phases.

Type of phase Energy l 2

High energy phase 4 531025

Low energy phase 1.5 531025

Low energy phase 1 531025

Mean-field transition point 1.9 531025

Transition region 2 531025

Fluid phase 4 531023

Critical point 1.052 1.131024
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the duration of correlation in each phase is increasing w
increasingN. This is consistent with other dynamical studi
of systems with long-range interaction, which show that
Lyapunov exponents decrease, and hence memory effect
dure, with increasing population@26# once the critical value
of N has been exceeded@27#. We also mention that, at th
low energy ofE51 with populationsN532, 64, and 128,
correlations started becoming smaller and similar to thos
high energy, while we observed significant correlations
long duration in the supercritical phase at much larger val
of l 2. This will be discussed in the following sections.

Correlations in position are reflected by nonvanishing o
diagonal elements of the correlation matrix. In Figs. 7–9,
present the population correlation matrixCi j with Nbin520
and N564 for the low energy phase (E51), transition re-
gion (E52), and at the critical point. In the high energ
region above the transition, and in the supercritical region
small values ofl 2, no significant correlations were present
the system. In the low energy phase~Fig. 7!, strong correla-
tion is only present near the system center where the den
is high. This effect may be due to the presence of the cen
core, or long lasting collective oscillations, which we discu
below. Note that the anticorrelated domain in Fig. 7 co
cides with the region where the central density decrease
the dilute halo background in the mean-field density profi
at about 3–5 bins. In the transition region, however, Fig.~8!
long-range correlations are clearly present. The likely exp
nation is found by inspection of Fig. 6, where we found
extremely long time tail in the kinetic energy autocorrelati
function. It appears that, close to the transition, slowly d
caying diffusive modes are propagating throughout the en
system. Effectively, the system may be spending some t
in each phase. This simple idea would explain many of
observations for the transition region including the syste
wide correlation, and the long time tail in the autocorrelati

FIG. 6. The time correlation function of the kinetic energ
CK(t) in five different regions forN564, wheret is in units of
tdyn . In both the high energy (E54, l 25531025) and supercriti-
cal phase (E54, l 25531023), correlations are smaller, while in
the low energy phase (E51.5, l 25531025), at the transition
point (E51.9, l 25531025) and at the critical point (E
51.052, l 251.131024), relatively stronger correlations can b
observed. Note that the initial exponential decay of the correla
function is followed by the development of a long tail.
7-6
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ANGULAR-MOMENTUM-INDUCED PHASE TRANSITION . . . PHYSICAL REVIEW E65 056127
function, and will be discussed in Sec. VII. ForN5128, this
effect is more evident because the transition region is
rounded. Near the critical point~Fig. 9!, we observe similar
behavior as in the low energy phase, except that the co
lated region is broadened. Here we also confirmed that
anticorrelated region in Fig. 9 coincides with the regi
where the mean-field density fades into the halo backgrou
which occurs at about 3–8 bins. Note that oscillations in
kinetic energy autocorrelation function also appear here.

FIG. 7. Position correlation matrix in relative bin populatio
Ci j , for Nbin520 andi . j in the low energy phase (E51, l 255
31025, N564). The bin radii represent the equal-mass layers
tained from the mean-field density profile. Strong anticorrelation
present close to the high density central core region.

FIG. 8. Position correlation matrix in relative bin populatio
Ci j , for Nbin520 and i . j in the phase transition region (E
52, l 25531025, N564). The bin radii represent the equal-ma
shells obtained from the mean-field density profile of phase 1
Fig. 1. Strong anticorrelation is present between the center and
remainder of the system.
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VI. RELAXATION

In this work we consider three types of relaxation; viole
relaxation following the initial phase of the simulation
equilibration, i.e., the approach to equilibrium, on the long
time scales, and the decay of kinetic energy fluctuations o
equilibrium has been reached. We investigate early~violent!
relaxation by studying the decay of oscillations in the tim
averaged virial ratio, equilibration by the reduction of thes r

2

statistic @Eq. ~3!# with time, and the decay of fluctuation
through the kinetic energy autocorrelation function@Eq. ~4!#.
We see below that each type of relaxation has characteri
that reflect the location in the (E,l 2) phase plane in which
the system is prepared.

In the initial evolutionary stage, both the kinetic and p
tential energies are changing rapidly with time. Lynden-B
termed this stage as ‘‘violent relaxation’’ and pointed out th
phase mixing is the usual mechanism for the establishm
of a quasistationary distribution inm space that causes th
gravitational system to virialize. Early relaxation studies
the planar sheet model showed that virialization typica
takes place in about 50 dynamical times or less@28#. Here we
studied the development of the time-averaged virial ratio
each of the initial states discussed earlier as the time
gressed. Again we found a varied behavior that depe
strongly on the location of the initial (E,l 2) phase point.
Virialization occurred most rapidly in the low energy pha
below the transition. In common with earlier studies, for bo
the high and low energy phases, the time to achieve vir
ization decreased with increasingN. In contrast, in the tran-
sition region, virialization was similar to the relaxation pr

-
s

n
he

FIG. 9. Position correlation matrix in relative populationsCi j ,
for Nbin520 andi . j near the critical point of the phase diagra
(E51.052, l 251.131024, N564). The bin radii represent the
equal-mass shells obtained from the mean-field density profile.
behavior is similar to that of the low energy phase, although
anticorrelating region is wider. This reflects the fact that, at
critical point, the difference between the two distinct phases v
ishes. This intermediate state still has a core-halo structure, but
a more extended core region.
7-7
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PETER KLINKO AND BRUCE N. MILLER PHYSICAL REVIEW E65 056127
cess inm space and takes place on a much longer time sc
Moreover, with increasingN, virialization took place on
longer time scales due to the decrease in broadening o
transition region, and the increasing influence of the me
stable state.

Thes r
2 statistic, Eq.~3!, compares the time-averaged di

tribution of shells in bins at timest and 2t. As noted earlier,
it was computed for all initial conditions, and its value w
used to terminate each run. Ideally, if the system has
fectly equilibrated, it should vanish. In Fig. 10, we prese
log-log plots of s r

2 versus time for the low energy phas
(E51), for simulations withN516, 32, 64, and 128. In
order to compensate for the statistical error induced by
ferences inN, we used sampling rates with respective sn
shot times 0.125tdyn,0.25tdyn,0.5tdyn ,tdyn . In the transition
region, we used the high energy, equal-mass, mean-field
to calculate the relative populations. In all cases we fou
that the relaxation process exhibits power-law behavior
long time scales, which meanss r

2}t2a. Interestingly, for
both the low and high energy phases, the exponenta was not
N dependent, and the relaxation was similar in both pha
with a51.060.1. However, in the transition region simula
tions were relaxing more slowly with larger fluctuation
suggesting that the system may be flipping back and fo
between the stable and metastable phases. Here, with
creasingN, a became smaller while its variance becom
larger. ForN516, a is still 160.2 but forN532, 64, and
128 the uncertainty becomes larger.

The possibility for collective modes in systems with lon
range forces has been studied in both plasmas and gra
tional systems@6#. Even for the small populations considere
here, careful examination of Fig. 6 indicates that, as the
ergy is lowered, the correlation function exhibits damp
oscillations. Since we are examining the total kinetic ene
of the system, this suggests the possible presence of co
tive oscillations in equilibrium. To examine this in furthe
detail, we usedCK(t) to study the decay of kinetic energ

FIG. 10. Plots ofs r
2 versus time, which indicate the relaxatio

process inm space for simulations withN516, 32, 64, and 128 in
the low energy phase (E51, l 25531025). In order to avoid sta-
tistical error during sampling, we chose snapshot timests50.125,
0.25, 0.5, and 1 for the corresponding values ofNs. In the high
energy phase, we observe a similar power-law relaxation that
follows s r

2}1/t.
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fluctuations in the fluid phase with fixedE50.0 for different
values of bothl 2 and N. In Fig. 11, we present the kineti
energy autocorrelation function for fixedE50 and three val-
ues ofl 2 (0.005,0.1,0.5) above the critical point value. In
system with sufficiently largel 2, we see that oscillations sta
to develop with a long-lived positive tail. In Fig. 12, we plo
the correlation functions for different values ofN at E50
and l 250.1. Note that as we approach the mean-field lim
the nonvanishing tail has a larger value, and the oscillat
part has a longer duration. This suggests that, with increa
N, single particle behavior is suppressed and the sys
starts to behave like a Vlasov fluid. In the mean-field lim
the effective potentialF1 l 2/(2r 2) always has a minimum
For large values ofl 2, the width of this region become
larger, possibly allowing low frequency collective modes
develop in the system. Similar behavior was observed
Feix and Rouet for the system of planar mass sheets@29#.
There the initial system was prepared in a stationary ‘‘wat
bag’’ state. They found that kinetic energy fluctuations h
the frequency of the collective modes, rather than that of

so

FIG. 11. The time correlation of the kinetic energyCK(t) versus
time for three regions of the supercritical phase at the energE
50. With increasingl 2, an oscillating part starts to ‘‘sit on top’’ of
the correlation function, which suppresses the early exponentia
havior, and a very long tail starts to develop.

FIG. 12. N dependence of the oscillations inCK(t) at E50 and
l 250.1. As we approach the mean-field limit, oscillations persist
a longer time and correlations in the tail grow.
7-8
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ANGULAR-MOMENTUM-INDUCED PHASE TRANSITION . . . PHYSICAL REVIEW E65 056127
individual closed Vlasov orbits in the (x,v) phase plane. The
same phenomena may be occurring in thel 2 model as well.
Supporting evidence was provided by the correlation ma
which showed strong correlations in position in the cen
part of the system for these thermodynamic states.

VII. SUMMARY AND CONCLUSIONS

The role of thermodynamics in controlling the evolutio
of gravitational systems is only partially understood, a
there are many open questions. It is our impression tha
cently this subject is attracting increased attention. Obse
tions of the radial density dependence of globular clus
show that they fall into two groups, with either a smooth
decreasing density profile with increasing radiusr, or a sharp
central peak and a more diffuse halo@10#. The evidence sug
gests that a thermodynamic interpretation may be poss
i.e., perhaps the clusters can exist in different phases at
servable times@10#.

Here we investigated the dynamics of the gravitatio
phase transition in thel 2 model of a self-gravitating system
in the MCE in which the mass elements are thin, concen
shells. In this idealized model, instead of regularizing
singularity of the Newtonian potential, we simply fixed th
square of the angular momentum of each shell. In Sec.
we showed that, in the mean-field limit, the equilibriu
states of this system correspond to those of the more rea
system of point masses when the same constraint is impo
In an earlier work, we showed that a correspondence
exists under less restrictive circumstances@8#. The constraint
of constantl 2 for each shell, or particle, establishes a ce
trifugal barrier that prevents the occurrence of the gravoth
mal catastrophe, and induces a first order phase transitio
both CE and MCE@18#.

One important conclusion that can be reached from
study is that angular-momentum exchange plays an im
tant role in a self-gravitating system, which alters the th
modynamic behavior. Another is that it is not necessary
soften the singularity in the Newtonian potential to obtain
transition. The effect of the singularity can be blocked
other mechanisms. This is especially relevant in stellar c
ters, where the distance between stars is too great for so
ing to be important. If stellar systems can exist in, or ev
approximate, different thermodynamic phases, the influe
of the singularity needs to be blocked, at least temporarily
our earlier, mean-field study of a spherical system that p
mitted exchange, no transition was found and the gravot
mal catastrophe could not be prevented in spite of the
that bothL2 andE were fixed. At this time it is not clear how
this might occur. One possibility is that angular-momentu
exchange between stars may occur so slowly that, in
present epoch, thermodynamics could be influenced by
effective centrifugal barrier. Since globular clusters are
proximately spherical, this is worth investigating. Anoth
possibility is that stellar interactions with hard binaries in t
cluster core may also establish a centrifugal barrier. Th
conjectures require further investigation.
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In this work we usedN-body dynamical simulation to
verify the earlier mean-field predictions@18#. Our N-body
simulations confirmed the mean-field phase transition, t
was shifted and broadened due to finite-size effects. We
verified that finite-size scaling is in very good agreeme
with the observed shifting and rounding in the transition
gion. An interesting feature of the convergence to MFT w
the observation that agreement in the density with increas
N was much slower near the system center for small val
of l 2. This appears to be a discreteness effect. For a s
value of l 2 the density is changing rapidly due to the com
petition between the centrifugal barrier and the largely u
screened gravitational potential, which combine to form
very narrow minimum in the effective potential. Because
discreteness effects, the mean local density cannot cha
this rapidly in the dynamical simulation, and this was read
observable in the average population of the central bin.

In addition to confirming agreement with mean-fie
theory for the time average of physical quantities, such as
density and the kinetic and potential energies, we also s
ied fluctuations in density and kinetic energy, correlations
position, and the dynamical behavior of the system in e
phase, the transition region, and at the critical point, i
properties that are not accessible from MFT. These inclu
virialization, relaxation to equilibrium, and the decay of flu
tuations in kinetic energy through its autocorrelation fun
tion. In general, asN becomes large, it is expected that th
Vlasov regime will be approached. In this regimef (r ,v)
completely characterizes the system at each time. It
shown long ago that in a system with a smooth, bound
potential, fluctuations and correlations decay in the Vlas
limit @19#. In the largeN scaling regime it is easy to show
that the variance of fluctuations in both bin populations a
total kinetic energy should decay asN21. We found this
behavior over the complete range of population for t
former, while a wide variation of power-law exponents ch
acterized the reduction of the kinetic energy variance
pending on the thermodynamic state. This suggests that
simulations were not fully in the scaling regime for th
smaller populations considered. This is not surprising, a
was supported by the size of the spontaneous kinetic en
fluctuations as well as theN dependence of the remainin
dynamical quantities.

In the transition region, strong corroborating eviden
was obtained to support the ansatz that the system is flu
ating in time between the stable and metastable phases.
of all, relaxation to equilibrium as measured by thes r

2 sta-
tistic takes longer and, at a given time, the fluctuations
much larger than those occurring away from the transiti
Second, virialization occurs on the same time scale ass r

2 ,
whereas at low energy, the virialization takes place in ab
100tdyn . Fast virialization is also observed in other mod
systems that lack a transition, such as the planar sheet sy
@28,30# and point mass systems@6,10# where it occurs in
50–100 dynamical times, long before relaxation to equil
rium has occurred. Third, near the transition an extrem
long time tail appears in the kinetic energy autocorrelat
function, indicating that the system continues to feel t
presence of the metastable phase. The lack of oscillatio
7-9
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PETER KLINKO AND BRUCE N. MILLER PHYSICAL REVIEW E65 056127
CK(t) suggests that a slow, diffusive mode is dominating
linear relaxation.

The observation that relaxation to equilibrium exhib
power-law behavior was unanticipated and is crucial for
derstanding the system dynamics. In the astrophysics lit
ture it is usual to define the relaxation time for gravitation
evolution @6,10# as the time taken for a typical star to b
sufficiently deflected so that the change in its velocity is
the order of its mean. The standard result ist relax
'(N/10lnN)tdyn. However, here we see that relaxation do
not occur with a characteristic time, but rather is scale-fr
with s r

2;t21. An open question is whether relaxation
scale-free in higher dimension as well, e.g., for a point m
system.

There are now two gravitational systems in which t
existence of a first order phase transition has been dem
strated both by mean-field theory and, within finite scalin
dynamical simulation. The system of irrotational shells stu
ied earlier@17# and the system considered here share m
similarities, but differ in one feature. Each system is char
terized by an additional parameter besides the energy: In
nonrotating model, the inner barrier radiusa plays the role of
l 2 so its maximum density occurs atr 5a. Each of these
systems exhibit a transition in MCE to a more centrally co
densed phase as the energy is lowered. Each system
d

ce
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critical value of the new parameter above which the tran
tion is not allowed. However, in the present system we fi
evidence of persistent fluctuations that develop long-liv
oscillations asN is increased in MCE, and local correlatio
in position near the system center. This suggests that co
tive oscillations may be occurring in the system. Persist
oscillations were also observed in simulations of the pla
sheet system for largeN @29#.

We are currently modeling the system via dynamic
simulation for the canonical ensemble. This is accomplish
by introducing thermalizing collisions at the outer bounda
There are strong contrasts with the MCE, which we w
report in a separate work. We also plan to use dynam
simulation to investigate the locally stable regime that ari
when angular-momentum exchange is allowed@8#. In addi-
tion, we would like to suggest that the Vlasov dynamics m
give insight into the collective behavior found in the flu
phase of thel 2 model.
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